INTEGRATION OF SOLAR AND PV BATTERY WITH ADVANCED CONTROL STRATEGY OF A THREE-LEVEL NPC INVERTER

1N CHANDRAMOHAN, 2Y.NARASIMHA RAO
1Mtech, NALANDA INSTITUTE OF ENGINEERING & TECHNOLOGY
2Associate Professor, NALANDA INSTITUTE OF ENGINEERING & TECHNOLOGY

Abstract- In this paper proposes the design and analysis of the proposed configuration and the theoretical framework of the propose modulation technique. A novel configuration of a three-level neutral-point-clamped (NPC) inverter that can integrate solar photovoltaic (PV) with battery storage in a grid-connected system proposed in this paper. The strength of the proposed topology lies in a novel extended three-level vector modulation technique than can generate the correct ac voltage under unbalanced dc voltage conditions. In order to control the power deliver between the solar PV, battery, and grid, which simultaneously provides maximum power point tracking (MPPT) operation for the solar PV with new control algorithm for the proposed system is also presented. The effectiveness of the proposed methodology is investigated by the simulation of several scenarios, including battery charging and discharging with different levels of solar irradiation. By using the simulation results we can analyze the proposed method. Index Terms—Battery storage, solar photovoltaic (PV), space vector modulation (SVM), three-level inverter.

I. INTRODUCTION

The power delivered by a PV system of one or more photovoltaic cells is dependent on the irradiance, temperature, and the current drawn from the cells. Maximum Power Point Tracking (MPPT) is used to obtain the maximum power from these systems. In solar PV or wind energy applications, utilizing maximum power from the source is one of the most important functions of the power electronic systems [3]–[5]. In three-phase applications, two types of power electronic configurations are commonly used to transfer power from the renewable energy resource to the grid: single-stage and double-stage conversion. In the double-stage conversion for a PV system, the first stage is usually a dc/dc converter and the second stage is a dc/ac inverter. The function of the dc/dc converter is to facilitate the maximum power point tracking (MPPT) of the PV array and to produce the appropriate dc voltage for the dc/ac inverter. The function of the inverter is to generate three-phase sinusoidal voltages or currents to transfer the power to the grid in a grid-connected solar PV system or to the load in a stand-alone system [3]–[5].

In the single-stage connection, only one converter is needed to fulfill the double-stage functions, and hence the system will have a lower cost and higher efficiency, however, a more complex control method will be required. This paper is concerned with the design and study of a grid-connected three-phase solar PV system integrated with battery storage using only one three-level converter having the capability of MPPT and ac-side current control, and also the ability of controlling the battery charging and discharging.

One of the main ideas of this paper is to have an overall view of the switching effects on a three-wire connection of a three-level NPC inverter with a combination of these systems on the dc side. This also can increase the flexibility of power system control and raise the overall availability of the system [2]. Usually, a converter is required to control the charging and discharging of the battery storage system and another converter is required for dc/ac power conversion; thus, a three phase PV system connected to battery storage will require two converters.

II. STRUCTURE OF A THREE-LEVEL INVERTER AND ITS CAPACITOR VOLTAGE CONSIDERATIONS

A. Three-Level Inverter

Fig. 1(a) shows a typical three phase three-level neutral-point-clamped (NPC) inverter circuit topology. The converter has two capacitors in the dc side to produce the three-level ac-side phase voltages. The capacitor voltages are assumed to be balanced, since it has been reported that unbalance capacitor voltages can affect the ac side voltages and can produce unexpected behavior on system parameters such as even-harmonic injection and power ripple.

![Fig. 1. Typical three-level inverter (a) structure of circuit,](image-url)
B. Balanced Capacitors Voltage

Various strategies have been proposed to balance the capacitor voltages using modulation algorithms such as sinusoidal carrier based PWM (SPWM) or space vector pulse width modulation (SVPWM). In SPWM applications, most of the strategies are based on injecting the appropriate zero-sequence signal into the modulation signals to balance the dc-link capacitors. In SVPWM applications, a better understanding of the effects of the switching options on the capacitor voltages in the vector space has resulted in many strategies proposed to balance capacitors voltages in the three-level NPC inverter. In any space vector modulation (SVM) scheme such as SVPWM and VSVPWM, the reference vector \(V_{\text{ref}} \) is generated by selecting the appropriate available vectors in each time frame in such a way that the average of the applied vectors must be equal to the reference vector. Equation (1) shows the mathematical relation between the timing of the applied vectors and the reference vector.

\[
\begin{align*}
T_s V_{\text{ref}} &= \sum_{i=1}^{n} T_i V_i \\
T_s &= \sum_{i=1}^{n} T_i
\end{align*}
\]

Where \(T_s \) is the time frame and preferred to be as short as possible. \(T_i \) is the corresponding time segment for selected inverter vector \(V_i \) and \(n \) is the number of applied vectors.

For example, Fig. 2 shows the connection of the capacitors when “100” or “211” is selected, demonstrating how different capacitors are involved in the transfer of power. Capacitor balancing in most reported three-level NPC inverter applications is achieved by the proper selection of the short vectors.

Fig. 3 shows a general structure of a grid-connected three-level inverter showing the dc and ac sides of the inverter. The dc-side system, shown as “N” can be made up of many circuit configurations, depending on the application of the inverter. For instance, the dc-side system can be a solar PV, a wind generator with a rectifying circuit, a battery storage system or a combination of these systems where the dc voltage across each capacitor can be different or equal.
Mathematically, in a three-wire connection of a two-level inverter, the dq0-field, vd, vq, and v0 of the inverter in vector control can be considered as having two degrees of freedom in the control system; because the zero sequence voltage, v0 will have no effect on the system behavior in both the dc and the ac side of the inverter. However, in the three-level three-wire application illustrated in Fig. 3, with fixed vd and vq although v0 will have no effect on the ac-side behavior, it can be useful to take advantage of v0 to provide a new degree of freedom to control the sharing of the capacitor voltages in the dc bus of the inverter.

D. Effect of Unbalanced Capacitor Voltages

On the Vector Diagram In the vector diagram shown in Fig. 1(b), capacitor voltage unbalance causes the short and medium vectors to have different magnitudes and angles compared to the case when the capacitor voltages are balanced.

\[V_{su1} = h \] \hspace{1cm} (3)
\[V_{tu1} = 1 - h \] \hspace{1cm} (4)
\[V_{t2} = \frac{1}{2} + \frac{\sqrt{3}}{2} j \] \hspace{1cm} (5)
\[V_{sd1} = h \left(\frac{1}{2} + \frac{\sqrt{3}}{2} j \right) \] \hspace{1cm} (6)
\[\bar{V}_{su2} = (1 - h) \left(\frac{1}{2} + \frac{\sqrt{3}}{2} j \right) \] \hspace{1cm} (7)
\[\bar{V}_{m1} = \left(1 - \frac{h}{2} \right) + h \frac{\sqrt{3}}{2} j \] \hspace{1cm} (8)

The vectors in the other sectors can be calculated similarly. Equations (3)–(9) show that the magnitudes and the angles of the vectors can change depending on the value of the capacitor voltages.

E. SELECTING VECTORS UNDER UNBALANCED DC VOLTAGE CONDITION AND THEIR EFFECTS ON THE AC SIDE OF INVERTER

To generate a reference vector based on (1), different combinations can be implemented. Fig. 5 shows different possible vector selections to generate a reference vector (V*) in the first sector based on the selections of different short vectors.

Fig. 5. Different possible vector selection ideas

For example, to generate V* based on Fig. 5(a), one of following combinations can be selected with proper timing based on (1). The combinations are: (221–210–100), (221–220–100), (221–200–100), (221–Zero), (000–220–Zero), (220–200–Zero), where “Zero” can be “000” or “111” or “222”. This demonstrates that there is flexibility in choosing the correct vector selections.

To investigate the continuous time behavior of the ac-side voltages, the error vectore(t) can be calculated in order to determine how far the generated voltage deviates from the requested vector as follows:

\[e(t) = \bar{V}^r(t) - \bar{V}_{req}(t) \] \hspace{1cm} (10)
\[E(t) \leq \int_0^T |e(t)| dt : 0 \leq t \leq T_s \] \hspace{1cm} (11)
where $V_{ap}(t)$ is the applied vector at the time “t”. This error can result in harmonic current across the impedance connected between the inverter and the grid. If this impedance is an inductor then the ripple in the inductors current I_rL can be expressed as

$$\tilde{I}_L = \frac{1}{L} \int_0^t \tilde{e}(t) dt$$ \hspace{1cm} (12)

Where $e(t)$ is defined as

$$\tilde{e}(t) \equiv \frac{1}{L} \frac{dI_rL}{dt}$$ \hspace{1cm} (13)

To derive (13), it is assumed that the requested vector $V^* (t)$ will generate sinusoidal current in the inductor, which is normally acceptable in the continuous time behavior of the system.

F. Selecting Vectors Under Unbalanced DC Voltage

Conditions and Their Effects on DC Side of the Inverter As far as the dc side is concerned, different vectors have different effects on the capacitor voltages which depend on the sum of the incoming currents from the dc side and the inverter side.

The instantaneous power transmitted to the dc side of the inverter from the ac side can be calculated as follows:

$$p(t) = v_{Ia} - i_a + v_{Ib} - i_b + v_{Ic} - i_c$$ \hspace{1cm} (14)

Where v_{Ia}, v_{Ib}, and v_{Ic} are the ac-side inverter instantaneous voltages with reference to the “N” point, and i_a, i_b, i_c are inverter currents. For example, in the first sector of the vector diagram shown in Fig. 4, $p(t)$ for the short vectors can be expressed by the following equations:

$$p_{211}(t) = (1 - h) V_{dc} * i_a$$ \hspace{1cm} (15)

$$p_{100}(t) = h V_{dc} * (-i_a)$$

$$p_{211}(t) = (1 - h) V_{dc} * (-i_c)$$

$$p_{110}(t) = h V_{dc} * i_c$$ \hspace{1cm} (16)

Ignoring the dc-side system behavior, selecting the upper short vectors, “211” and “221,” will affect the upper capacitor voltage, and selecting the lower short vectors, “100” and “110,” will affect the lower capacitor voltage.

III. PROPOSED TOPOLOGY TO INTEGRATE SOLAR PV AND BATTERY STORAGE AND ITS ASSOCIATED CONTROL

A. Proposed Topology to Integrate Solar PV and Battery Storage Using an Improved Unbalanced DC Functionality of a Three-Level Inverter

Two new configurations of a three-level inverter to integrate battery storage and solar PV shown in Fig. 6 are proposed, where no extra converter is required to connect the battery storage to the grid connected PV system. These can reduce the cost and improve the overall efficiency of the whole system particularly for medium and high power applications. Fig. 6(a) shows the diagram of the basic configuration. In the proposed system, power can be transferred to the grid from the renewable energy source while allowing charging and discharging of the battery storage system as requested by the control system.

Fig. 6. Proposed configurations for integrating solar PV and battery storage: (a) basic configuration; (b) improved configuration.
Fig. 7. Control system diagram to integrate PV and battery storage

B. Control Topology

In Fig. 6(b), three different relay configurations can be obtained: 1) when the top relay is closed; 2) when the bottom relay is closed; and 3) when both relays are closed. Fig. 7 shows the block diagram of the control system for configuration 1). In Fig. 7, the requested active and reactive power generation by the inverter to be transferred to the grid will be determined by the network supervisory block. This will be achieved based on the available PV generation, the grid data, and the current battery variables.

The MPPT block determines the requested dc voltage across the PV to achieve the MPPT condition. This voltage can be determined by using another control loop, with slower dynamics, using the measurement of the available PV power. The details of the MPPT algorithm to determine the desired voltage (V*dc) can be found in [3] and [4]. Based on the requested active (p*) and reactive power (q*), and the grid voltage in the dq-axis, vsd and vsq, the requested inverter current in the dq-axis, id and iq, can be obtained using (17):

\[
\begin{align*}
 p &= v_{sd}i_d + v_{sq}i_q \\
 q &= v_{sq}i_d + v_{sd}i_q
\end{align*}
\]

By using a proportional and integral (PI) controller and decoupling control structure, the inverter requested voltage vector can be calculated. The proposed control system is shown in Fig. 7. In the proposed system, to transfer a specified amount of power to the grid, the battery will be charged using surplus energy from the PV or will be discharged to support the PV when the available energy cannot support the requested power.

To determine which short vectors are to be selected, the relative errors of capacitor voltages given in (18) and (19) are used

\[
\begin{align*}
 \varepsilon_{V_c1} &= \frac{V_{c1}^* - V_{c1}}{V_{c1}} \\
 \varepsilon_{V_c2} &= \frac{V_{c2}^* - V_{c2}}{V_{c2}}
\end{align*}
\]

where V* C1 and V* C2 are the desired capacitor voltages, and VC1 and VC2 are the actual capacitor voltages for capacitor C1 and C2, respectively.

The selection of the short vectors will determine which capacitor is to be charged or discharged. A decision function “F,” as given in (20), can be defined based on this idea

\[
F = G_1 e_{V_{c1}} - G_2 e_{V_{c2}}
\]
Where G_1 and G_2 are the gains associated with each of the relative errors of the capacitor voltages. G_1 and G_2 are used to determine which relative error of the capacitor voltages is more important and consequently allows better control of the chosen capacitor voltage.

In each time step, the sign of F is used to determine which short vectors are to be chosen. When F is positive, the short vectors need to be selected that can charge C_1 or discharge C_2 in that particular time step by applying (14) and using similar reasoning to (15) and (16). Similarly, when F is negative, the short vectors need to be selected that can charge C_2 or discharge C_1 in that particular time step.

The same control system is applicable for configuration 2) by changing the generated reference voltages for the capacitors. Configuration 3) represents two storage systems connected to grid without any PV contribution, such as at night when the PV is not producing any output power.

IV. SIMULATION AND VALIDATION OF THE PROPOSED TOPOLOGY AND CONTROL SYSTEM

Simulations have been carried out using MATLAB/Simulink to verify the effectiveness of the proposed topology and control system. An LCL filter is used to connect the inverter to the grid. Fig. 8 shows the block diagram of the simulated system.

![Block diagram of the simulated system](image)

Fig. 8. Block diagram of the simulated system.

TABLE I	PARAMETERS OF THE SIMULATED SYSTEM					
$V_{B_{at}}$	$V_{(line)}$	$L_{B_{at}}$	C_1	C_2	I_l	L_s
60 V	50 V	5 mH	1000 μF	500 μF	900 μF	
r_f	C_f	K_0	K_i	G_1	G_2	
3 Ω	14 μF	2.9	1700	1	200	

Three, series-connected PV modules are used in the simulation. The mathematical model of each of the PV units is given in (21) [21] and used in the simulation

$$IPV = I_{SC} - 10^{-7} \left(e^{\frac{V_{PV}}{2574+10^{-7}}} - 1 \right) \quad (21)$$

Where I_{SC} is the short circuit current of the PV.

For theoretical purposes, two different scenarios have been simulated to investigate the effectiveness of the proposed topology and the control algorithm using a step change in the reference inputs under the following conditions:

1) The effect of a step change in the requested active and reactive power to be transferred to the grid when the solar irradiance is assumed to be constant.
2) The effect of a step change of the solar irradiation when the requested active and reactive power to be transmitted to the grid is assumed to be constant.

A. First Theoretical Scenario

Fig. 9 shows the results of the first scenario simulation. The simulation results in Fig. 9 show that the whole system produces a very good dynamic response. Fig. 10 shows the inverter waveforms for the same scenario.

![Simulated results for the first scenario](image)

Fig. 9. Simulated results for the first scenario. (a) Active power injected to the grid. (b) Reactive power injected to the grid. (c) PV module DC voltage. (d) Battery current. (e) Inverter AC current. (f) Grid current.

Fig. 10(a) shows the line-to-line voltage V_{ab}, and Fig. 10(b) shows the phase to midpoint voltage of the inverter V_{ao}. Fig. 10(c) and (e) shows V_{ao} and V_{an} after mathematical filtering to determine the average value of the PWM waveforms.

![Simulated inverter waveforms](image)

Fig. 10. Simulated inverter waveforms. (a) Vab - Phase to phase inverter voltage. (b) Vao - Inverter phase voltage reference to midpoint. (c) Filtered Von - Filtered inverter phase voltage reference to midpoint.
B. Second Theoretical Scenario

Fig. 11 shows the results of the second scenario simulation. Fig. 11(a) shows that the inverter is able to generate the requested active power. Fig. 11(b) shows that the PV voltage was controlled accurately for different solar irradiation values to obtain the relevant maximum power from the PV modules.

C. Practically Oriented Simulation

Fig. 12(a) shows that the active power transmitted to the grid reduces and follows the requested active power. Fig. 12(b) shows the ac inverter currents slowly decreasing starting from 3.4Arms att=40 ms and finally stays constant at 1.9Arms att=90 ms.

VI. CONCLUSION

The main aim of this paper is to have an overall view of the switching effects on a three-wire connection of a three-level NPC inverter with a combination of these systems on the dc side. Grid connected renewable energy systems accompanied by battery energy storage can overcome this concern. This also can increase the flexibility of power system control and raise the overall availability of the system. In this paper proposes a novel topology for a three-level NPC voltage source inverter that can integrate both renewable energy and battery storage on the dc side of the inverter. A theoretical framework of a novel extended unbalance three-level vector modulation technique that can generate the correct ac voltage under unbalanced dc voltage conditions has been proposed. A new control algorithm for the proposed system has also been presented in order to control power flow between solar PV, battery, and grid system, while MPPT operation for the solar PV is achieved simultaneously. By using the simulation results we can control both PV and battery storage in supplying power to the ac grid.

REFERENCES