MOTION CONTROL OF TELE ROBOT USING HAND GESTURE

JAVANGULA JHANSI RANI ¹, RAKESH DASARI ²

¹ Javangula Jhansi Rani, M.Tech Student, Dept of ECE, Loyola Institute of Technology & Management, Dhulipalla, Sattenapalli, Guntur, A.P., India.

² Guide details: Rakesh Dasari, M.Tech, Assistant Professor, Dept of ECE, Loyola Institute of Technology & Management, Dhulipalla, Sattenapalli, Guntur, A.P., India.

Abstract: We present a novel system to achieve coordinated task-based control on a dual-arm industrial robot for the general tasks of visual servoing and bimanual hybrid motion/force control. The industrial robot, consisting of a rotating torso and two seven degree-of-freedom arms, performs autonomous vision-based target alignment of both arms with the aid of fiducial markers, two-handed grasping and force control, and robust object manipulation in a tele-robotic framework. Industrial robots traditionally are preprogrammed with teach pendants to perform simple repetitive tasks without any sensor feedback. This work was motivated by demonstrating that industrial robots can also perform advanced, sensor based tasks such as visual servoing, force-feedback control, and tele-operation. Industrial robots are typically limited by the long delay between command and action, but with careful tuning, we show that these sensor-based methods are still feasible even with off-the-shelf sensors.

Keywords: controller, MEMS sensor, motors.

I. INTRODUCTION

Robot is very useful for mankind in doing uncertain tasks and there are different way of approaches to control the robot like voice or wireless communications but none of them will be useful in providing friendly environment for disabled person so we propose a system in which robot can be operated through gesture. In proposed system accelerometer sensor is attached to the user hand or head depending upon the hand gestures or head movements the robot will be controlled the robot is provided with arm structure which can be helpful in picking the things. The main purpose of this project is to design a hand-glove robot which is controlled according to the movement of hand.

II. HARDWARE SYSTEM

Fig 1: Block diagram

The aim at incorporating the modern ways of wheel chair dynamics and control and at the same time making it cost effective, so that it is affordable to the common masses. The goal of this research is to develop a wheelchair system which controls its movement by the mere bending of a person’s fingers. Special type of sensor known as ‘MEMS-sensor’ is embedded in order to achieve the desired goal. In this research a prototype of an affordable and technologically advanced robot is to be designed and developed. This is to aid the communication of severely disabled people and enhance the
maneuvering of the vehicle with the use of hand movements.

The proposed prototype will be communicating between the controller and the plant and it will also replace the traditional joystick by the implementation of user hand glove control. The MEMS sensor can sense the movement and the sensor output is given to the controller. The controller sends the signals and according to the signals the motor is running which changes the robot movements.

III. HARDWARE SYSTEM FEATURES

Micro controller: This section forms the control unit of the whole project. This section basically consists of a Microcontroller with its associated circuitry like Crystal with capacitors, Reset circuitry, Pull up resistors (if needed) and so on. The Microcontroller forms the heart of the project because it controls the devices being interfaced and communicates with the devices according to the program being written.

ARM7TDMI: ARM is the abbreviation of Advanced RISC Machines, it is the name of a class of processors, and is the name of a kind technology too. The RISC instruction set, and related decode mechanism are much simpler than those of Complex Instruction Set Computer (CISC) designs.

Liquid-crystal display (LCD) is a flat panel display, electronic visual display that uses the light modulation properties of liquid crystals. Liquid crystals do not emit light directly. LCDs are available to display arbitrary images or fixed images which can be displayed or hidden, such as preset words, digits, and 7-segment displays as in a digital clock.

MEMS:

Micro-Electro-Mechanical Systems (MEMS) is the integration of mechanical elements, sensors, actuators, and electronics on a common silicon substrate through microfabrication technology. While the electronics are fabricated using integrated circuit (IC) process sequences (e.g., CMOS, Bipolar, or BICMOS processes), the micromechanical components are fabricated using compatible "micromachining" processes that selectively etch away parts of the silicon wafer or add new structural layers to form the mechanical and electromechanical devices. MEMS promises to revolutionize nearly every product category by bringing together silicon-based microelectronics with micromachining technology, making possible the realization of complete systems-on-a-chip. MEMS is an enabling technology allowing the development of smart products, augmenting the computational ability of microelectronics with the perception and control capabilities of micro sensors and micro actuators and expanding the space of possible designs and applications.

Microelectronic integrated circuits can be thought of as the "brains" of a system and MEMS augments this decision-making capability with "eyes" and "arms", to allow micro systems to sense and control the environment. Sensors gather information from the environment through measuring mechanical, thermal, biological, chemical, optical, and magnetic phenomena. The electronics then process the information derived from the sensors and through some decision making capability direct the actuators to respond by moving, positioning, regulating, pumping, and filtering, thereby controlling the environment for some desired outcome or purpose. Because MEMS devices are manufactured using batch fabrication techniques similar to those used for integrated circuits, unprecedented levels of
functionality, reliability, and sophistication can be placed on a small silicon chip at a relatively low cost.

Fig 2: MEMS IC

DC Motor:

A DC motor relies on the fact that like magnet poles repels and unlike magnetic poles attracts each other. A coil of wire with a current running through it generates an electromagnetic field aligned with the center of the coil. By switching the current on or off in a coil its magnetic field can be switched on or off or by switching the direction of the current in the coil the direction of the generated magnetic field can be switched 180°.

Fig 3: DC Motor

Motor driver:

DC motors are typically controlled by using a transistor configuration called an "H-bridge". This consists of a minimum of four mechanical or solid-state switches, such as two NPN and two PNP transistors. One NPN and one PNP transistor are activated at a time. Both NPN and PNP transistors can be activated to cause a short across the motor terminals, which can be useful for slowing down the motor from the back EMF it creates. H-bridge. Sometimes called a "full bridge" the H-bridge is so named because it has four switching elements at the "corners" of the H and the motor forms the cross bar. The switches are turned on in pairs, either high left and lower right, or lower left and high right, but never both switches on the same "side" of the bridge. If both switches on one side of a bridge are turned on it creates a short circuit between the battery plus and battery minus terminals. If the bridge is sufficiently powerful it will absorb that load and your batteries will simply drain quickly. Usually however the switches in question melt.

<table>
<thead>
<tr>
<th>High Side Left</th>
<th>High Side Right</th>
<th>Low Side Left</th>
<th>Low Side Right</th>
<th>Quadrant Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>On</td>
<td>Forward Running</td>
</tr>
<tr>
<td>Off</td>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>Backward Running</td>
</tr>
<tr>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>Braking</td>
</tr>
<tr>
<td>Off</td>
<td>Off</td>
<td>On</td>
<td>On</td>
<td>Braking</td>
</tr>
</tbody>
</table>

Table 1: operation of H-Bridge

IV. CONCLUSION

The proposed prototype will be communicating between the controller and the plant and it will also
replace the traditional joystick by the implementation of user hand glove control. Thus by using this project to an effective and efficient control for the people with disabilities was designed.

V. REFERENCES

