CHILDREN TRACKING SYSTEM BASED ON RFID TECHNOLOGY

N.VINOD KUMAR¹, H. SOMASEKHAŘ²

¹N.Vinod kumar, Student, Kotta College of Engineering, China, Kallur mandal, Kurnool, A.P., India.
²H. Somasekhar, Asst professor, Kotta College of Engineering, China, Kallur mandal, Kurnool, A.P., India.

Abstract:

Recently, all over the world, crime against children is increasing at higher rates and it is high time to offer safety support system for the children going to schools (or) homes. This paper focuses on implementing children tracking system for every child attending school. However the existing systems are not powerful enough to prevent the crime against children since these systems give information about the children group and not about each child resulting in low assurance about their child safety to parents and also does not concentrate on sensing the cry of the child and intimating the same to its parents. The proposed system includes a child module and two receiver modules for getting the information about the missed child on periodical basis. The child module includes ARM7 microcontroller, Global system for mobile communication (GSM), Voice playback circuit and the receiver module includes Android mobile device in parent’s hand and the other as monitoring database in control room of the school. Finally, implementation results for the proposed system are provided in this paper.

Index terms: RFID, GSM, Voice play back circuit.

I. INTRODUCTION

Recently, all over the world, crime against children is increasing at higher rates and it is high time to offer safety support system for the children going to schools. This paper focuses on implementing children tracking system for every child attending school (or) homes. However the existing systems are not powerful enough to prevent the crime against children since these systems give information about the children group and not about each child resulting in low assurance about their child safety to parents and also does not concentrate on sensing the cry of the child and intimating the same to its parents.

The main objective of the proposed system is to implement this project RFID Tags are placed in to the individual rooms and RFID Readers is attached to the children. Whenever children is moved from one room to another room then tag and reader communication will performs and automatically SMS will sent to their parents and also gives the alerting system , and also it identifies the children’s cry . if the children cry is detected then automatically sends a message to their parents and alerting system will activate. And also identifies whether the caretaker is present with the children or not. In this purpose RFID tags as attached to the caretaker and this hole operation is continuously monitoring with the help of wireless camera.

II. HARDWARE SYSTEM

Micro controller: This section forms the control unit of the whole project. This section basically consists of a Microcontroller with its associated circuitry like Crystal with capacitors, Reset circuitry, Pull up resistors (if needed) and so on. The Microcontroller forms the heart of the project because it controls the
devices being interfaced and communicates with the devices according to the program being written.

ARM7TDMI: ARM is the abbreviation of Advanced RISC Machines, it is the name of a class of processors, and is the name of a kind technology too. The RISC instruction set, and related decode mechanism are much simpler than those of Complex Instruction Set Computer (CISC) designs.

Liquid-crystal display (LCD) is a flat panel display, electronic visual display that uses the light modulation properties of liquid crystals. Liquid crystals do not emit light directly. LCDs are available to display arbitrary images or fixed images which can be displayed or hidden, such as preset words, digits, and 7-segment displays as in a digital clock.

III. Board hardware system features:

RFID:

Radio Frequency Identification (RFID) is a silicon chip-based transponder that communicates via radio waves. Radio Frequency Identification is a technology which uses tags as a component in an integrated supply chain solution set that will evolve over the next several years. RFID tags contain a chip which holds an electronic product code (EPC) number that points to additional data detailing the contents of the package. Readers identify the EPC numbers at a distance, without line-of-sight scanning or involving physical contact. Middleware can perform initial filtering on data from the readers. Applications are evolving to comply with shipping products to automatically processing transactions based on RFID technology RFID Reader Module, are also called as interrogators. They convert radio waves returned from the RFID tag into a form that can be passed on to Controllers, which can make use of it. RFID tags and readers have to be tuned to the same frequency in order to communicate. RFID systems use many different frequencies, but the most common and widely used & supported by our Reader is 125 KHz.

![Fig: Block diagram](image-url)

![Fig: Monitoring section](image-url)
Tags are classified into two types based on operating power supply fed to it.

1. Active Tags
2. Passive Tags

Active Tags: These tags have integrated batteries for powering the chip. Active Tags are powered by batteries and either have to be recharged, have their batteries replaced or be disposed of when the batteries fail.

Passive Tags: Passive tags are the tags that do not have batteries and have indefinite life expectancies.

A buzzer or beeper is a signaling device, usually electronic, typically used in automobiles, household appliances such as a microwave ovens, & game shows.

The word "buzzer" comes from the rasping noise that buzzers made when they were electromechanical devices, operated from stepped-down AC line voltage at 50 or 60 cycles. Other sounds commonly used to indicate that a button has been pressed are a ring or a beep.

The "Piezoelectric sound components" introduced herein operate on an innovative principle utilizing natural oscillation of piezoelectric ceramics. These buzzers are offered in lightweight compact sizes from the smallest diameter of 12mm to large Piezo electric sounders. Today, piezoelectric sound components are used in many ways such as home appliances, OA equipment, audio equipment telephones, etc. And they are applied widely, for example, in alarms, speakers, telephone ringers, receivers, transmitters, beep sounds, etc.

GSM:

Global System for Mobile Communication (GSM) is a set of ETSI standards specifying the infrastructure.
for a digital cellular service. The network is structured into a number of discrete sections:

- **Base Station Subsystem** – the base stations and their controllers explained
- **Network and Switching Subsystem** – the part of the network most similar to a fixed network, sometimes just called the "core network"
- **GPRS Core Network** – the optional part which allows packet-based Internet connections
- **Operations support system (OSS)** – network maintenance

SM was intended to be a secure wireless system. It has considered the user authentication using a pre-shared key and challenge-response, and over-the-air encryption. However, GSM is vulnerable to different class of attacks, each of them aiming a different part of the network.

IV. CONCLUSION

This project implementation primarily focuses on tracking a child’s position and its location is sent to its parent and control room. It can be extended to perform the same for all children in the school by reducing the size of the child module, thus fixing it to ID card of every child. This project also focuses on recording a child’s cry and when it matches with crying of the child in school or homes the text message is sent to its parents. It can be extended by placing voice recognizing sensors which senses the cry of all the children inside the school/homes and send the information to their parents appropriately by using the school database.

V. REFERENCES

in Hospital Environment”, proposed in 2010 5th IEEE conference on Industrial Electronics and Applications.

