DYNAMIC MODELLING AND PERFORMANCE ANALYSIS OF A GRID CONNECTED FLC BASED PV SYSTEM

MR. G. SEKHAR¹, MR. T. SRIKANTH REDDY²

¹PG Scholar Aurobindo Institute of Engineering & Technology, Telangana, India.
²Asst Professor Aurobindo Institute of Engineering & Technology, Telangana, India.

Abstract - This paper presents a high-reliability single-phase transformerless grid-connected inverter that utilizes super junction MOSFETs to achieve high efficiency for photovoltaic applications. The proposed converter utilizes two split ac-coupled inductors that operate separately for positive and negative half grid cycles. This eliminates the shoot-through issue that is encountered by traditional voltage source inverters, leading to enhanced system reliability. Dead time is not required at both the high-frequency pulsewidth modulation switching commutation and the grid zero crossing instants, improving the quality of the output ac-current and increasing the converter efficiency. The split structure of the proposed inverter does not lead itself to the reverse-recovery issues for the main power switches and as such super junction MOSFETs can be utilized without any reliability or efficiency penalties. Since MOSFETs are utilized in the proposed converter high efficiency can be achieved even at light load operations achieving a high California energy commission (CEC) or European union efficiency of the converter system. It also has the ability to operate at higher switching frequencies while maintaining high efficiency. The higher operating frequencies with high efficiency enables reduced cooling requirements and results in system cost savings by shrinking passive components. With two additional ac-side switches conducting the currents during the freewheeling phases, the photovoltaic array is decoupled from the grid. This reduces the high-frequency common-mode voltage leading to minimized ground loop leakage current. The operation principle, common-mode characteristic and design considerations of the proposed transformerless inverter are illustrated. The total losses of the power semiconductor devices of several existing transformerless inverters which utilize MOSFETs as main switches are evaluated and compared. The experimental results with a 5 kW prototype circuit show 99.0% CEC efficiency and 99.3% peak efficiency with a 20 kHz switching frequency. The high reliability and efficiency of the proposed converter makes it very attractive for single-phase transformerless photovoltaic inverter applications.

Index Terms — California energy commission (CEC) efficiency, European union (EU) efficiency, MOSFET inverters, high efficiency, high reliability, transformerless grid-connected photovoltaic inverter, FLC.

INTRODUCTION

Transformerless photovoltaic (PV) grid-connected inverters have the advantages of higher efficiency, lower cost, less complexity, and smaller volume compared to their counterparts with transformer galvanic isolation [1]–[27]. High frequency common-mode (CM) voltages must be
avoided for a transformerless PV grid-connected inverter because it will lead to a large charge/discharge current partially flowing through the inverter to the ground. This CM ground current will cause an increase in the current harmonics, higher losses, safety problems, and electromagnetic interference (EMI) issues [28]–[31]. For a grid-connected PV system, energy yield and payback time are greatly dependant on the inverter's reliability and efficiency, which are regarded as two of the most significant characteristics for PV inverters. In order to minimize the ground leakage current and improve the efficiency of the converter system, transformerless PV inverters utilizing unipolar PWM control have been presented [8]–[27]. The weighted California Energy Commission (CEC) or European Union (EU) efficiencies of most commercially available and literature-reported single-phase PV transformerless inverters are in the range of 96–98% [18]. Recently, several transformerless inverter topologies have been presented that use super junction MOSFETs devices [11]–[13] as main switches to avoid the fixed voltage-drop and the tail-current induced turn-off losses of IGBTs to achieve ultra high efficiency (over 98% weighted efficiency). One commercialized unipolar inverter topology, H5, as shown in Fig. 1(a), solves the ground leakage current issue and uses hybrid MOSFET and IGBT devices to achieve high efficiency [11]. The reported system peak and CEC efficiencies with an 8-kW converter system from the product datasheet is 98.3% and 98%, respectively, with 345-V dc input voltage and a 16-kHz switching frequency. However, this topology has high conduction losses due to the fact that the current must conduct through three switches in series during the active phase. Another disadvantage of the H5 is that the line-frequency switches S1 and S2 cannot utilize MOSFET devices because of the MOSFET body diode's slow reverse recovery. The slow reverse recovery of the MOSFET body diode can induce large turn-on losses, has a higher possibility of damage to the devices and leads to EMI problems. Shoot-through issues associated with traditional full bridge PWM inverters remain in the H5 topology due to the fact that the three active switches are series-connected to the dc bus.

![Figure 1: Single-phase transformerless PV inverters using super junction MOSFETs: (a) H5, (b) H6, and (c) dual-paralleled-buck inverters](image)

Replacing the switch S5 of the H5 inverter with two split switches S5 and S6 into two phase legs and adding two freewheeling diodes D5 and D6 for freewheeling current flows, the H6 topology was
The H6 inverter can be implemented using MOSFETs for the line frequency switching devices, eliminating the use of less efficient IGBTs. The reported peak efficiency and EU efficiency of a 300 W prototype circuit were 98.3% and 98.1%, respectively, with 180 V dc input voltage and 30 kHz switching frequency. The fixed voltage conduction losses of the IGBTs used in the H5 inverter are avoided in the H6 inverter topology improving efficiency; however, there are higher conduction losses due to the three series-connected switches in the current path during active phases. The shoot-through issues due to three active switches series connected to the dc-bus still remain in the H6 topology. Another disadvantage to the H6 inverter is that when the inverter output voltage and current has a phase shift the MOSFET body diodes may be activated. This can cause body diode reverse-recovery issues and decrease the reliability of the system. Another high-efficiency transformerless MOSFET inverter topology is the dual-paralleled-buck converter, as shown in Fig. 1(c). The dual-parallel-buck converter was inversely derived from the dual-boost bridgeless power-factor correction (PFC) circuit in [13]. The dual-paralleled-buck inverter eliminates the problem of high conduction losses in the H5 and H6 inverter topologies because there are only two active switches in series with the current path during active phases. The reported maximum and EU efficiencies of the dual-paralleled-buck inverter using Cool MOS switches and SiC diodes tested on a 4.5 kW prototype circuit were 99% and 98.8%, respectively, with an input voltage of 375 V and a switching frequency at 16 kHz. The main issue of this topology is that the grid is directly connected by two active switches S3 and S4, which may cause a grid short-circuit problem, reducing the reliability of the topology. A dead time of 500 μs between the line-frequency switches S3 and S4 at the zero-crossing instants needed to be added to avoid grid shoot-through. This adjustment to improve the system reliability comes at the cost of high zero-crossing distortion for the output grid current. One key issue for a high efficiency and reliability transformerless PV inverter is that in order to achieve high efficiency over a wide load range it is necessary to utilize MOSFETs for all switching devices. Another key issue is that the inverter should not have any shoot-through issues for higher reliability. In order to address these two key issues, a new inverter topology is proposed for single-phase transformerless PV grid-connected systems in this paper. The proposed transformerless PV inverter features: 1) high reliability because there are no shoot-through issues, 2) low output ac current distortion as a result of no dead-time requirements at every PWM switching commutation instant as well as at grid zero-crossing instants, 3) minimized CM leakage current because there are two additional ac-side switches that decouple the PV array from the grid during the freewheeling phases, and 4) all the active switches of the proposed converter can reliably employ super junction MOSFETs since it never has the chance to induce MOSFET body diode reverse recovery. As a result of the low conduction and switching losses of the super junction MOSFETs, the proposed converter can be designed to operate at higher switching frequencies while maintaining high system efficiency. Higher switching frequencies reduce the ac-current ripple and the size of passive components. Detailed power stage operation principle, PWM scheme, and CM leakage current analysis are described in this paper. The total losses of power devices for several existing MOS FET
inverters are comparatively evaluated. The loss reduction by replacing IGBTs with super junction MOSFETs as power switches for the proposed transformerless inverter is analyzed. To verify the effectiveness and demonstrate the performance of the proposed transformerless inverter, a 5 kW prototype circuit was built and tested using two different switching frequencies, 20 and 40 kHz. Experimental results show that the proposed inverter topology not only eliminates the issues of MOSFET body diode reverse recovery, ground leakage current, and shoot-through; it also achieves 99.3% maximum efficiency and 99.0% CEC efficiency with high-quality output current waveforms.

PROPOSED TOPOLOGY AND OPERATION ANALYSIS

Fig. 2 shows the circuit diagram of the proposed transformerless PV inverter, which is composed of six MOSFETs

![Circuit Diagram](image)

Fig. 2. Proposed high efficiency and reliability PV transformless inverter topology

In addition to the high efficiency and low leakage current features, the proposed transformerless inverter avoids shoot-through enhancing the reliability of the inverter. The inherent structure of the proposed inverter does not lead itself to the reverse recovery issues for the main power switches and as such superjunction MOSFETs can be utilized without any reliability or efficiency penalties.

Fig. 3 illustrates the PWM scheme for the proposed inverter. When the reference signal V_{control} is higher than zero, MOSFETs S1 and S3 are switched simultaneously in the PWM mode and S5 is kept on as a polarity selection switch in the half grid cycle; the gating signals G_2, G_4, and G_6 are low and S2, S4, and S6 are inactive. Similarly, if the reference signal $-V_{\text{control}}$ is higher than zero, MOSFETs S2 and S4 are switched simultaneously in the PWM mode and S6 is on as a polarity selection switch in...
the grid cycle; the gating signals G1, G3, and G5 are low and S1, S3, and S5 are inactive. Fig. 4 shows the four operation stages of the proposed inverter within one grid cycle. In the positive half-line grid cycle, the high-frequency switches S1 and S3 are modulated by the sinusoidal reference signal Vcontrol while S5 remains turned ON.

![Diagram](image)

(a)

(b)

(c)

(d)

Fig. 4. Topological stages of the proposed inverter: (a) active stage of positive half-line cycle, (b) freewheeling stage of positive half-line cycle, (c) active stage of negative half-line cycle, and (d) freewheeling stage of negative half-line cycle.

When S1 and S3 are ON, diode D5 is reverse-biased, the inductor currents of iLo1 and iLo3 are equally charged, and energy is transferred from the dc source to the grid; when S1 and S3 are deactivated, the switch S5 and diode D5 provide the inductor current iL1 and iL3 a freewheeling path decoupling the PV panel from the grid to avoid the CM leakage current. Coupled-inductor L2 is inactive in the positive half-line grid cycle.

Similarly, in the negative half cycle, S2 and S4 are switched at high frequency and S6 remains ON. Freewheeling occurs through S6 and D6.

![Diagram](image)

Fig. 5. Leakage current analysis model for the proposed transformerless PV inverter

![Diagram](image)

Fig. 6. Simplified CM leakage current analysis model for positive half-line cycle.
GROUND LOOP LEAKAGE CURRENT ANALYSIS AND POWER DEVICES LOSSES CALCULATION AND EVALUATION

A. GROUND LOOP LEAKAGE CURRENT ANALYSIS FOR THE PROPOSED TRANSFORMERLESS INVERTER.

A galvanic connection between the ground of the grid and the PV array exists in transformerless grid-connected PV systems. Large ground leakage currents may appear due to the high stray capacitance between the PV array and the ground [28]–[31]. In order to analyze the ground loop leakage current, Fig. 5 shows a model with the phase output points 1, 2, 3, and 4 modeled as controlled voltage sources connected to the negative terminal of the dc bus (N point). Fig. 5 clearly illustrates the stray elements influencing the ground leakage current, which include: 1) the stray capacitance between PV array and ground \(C_{PVg} \); 2) stray capacitances between the inverter devices and the ground \(C_{g1} - C_{g4} \); and 3) the series impedance between the ground connection points of the inverter and the grid \(Z_{g} \). The differential-mode (DM) filter capacitor \(C_{x} \) and the CM filter components \(L_{CM}, C_{Y1}, \) and \(C_{Y2} \) are also shown in the model. The value of the stray capacitances \(C_{g1}, C_{g2}, C_{g3}, \) and \(C_{g4} \) of MOSFETs is very low compared with that of \(C_{PVg} \), therefore the influence of these capacitors on the leakage current can be neglected. It is also noticed that the DM capacitor \(C_{x} \) does not affect the CM leakage current. Moreover, during the positive half-line cycle, switches \(S2, S4, \) and \(S6 \) are kept deactivated; hence the controlled voltage sources \(V_{2N} \) and \(V_{4N} \) are equal to zero and can be removed. Consequently, a simplified CM leakage current model for the positive half-line cycle is derived as shown in Fig. 6.

![Fig. 7. Simplified single-loop CM model for positive half-line cycle.](image)

With the help of the CM and DM concepts and by introducing the equivalent circuits between N and E, a single-loop model applicable to the CM leakage current analysis for the positive half-line cycle of the proposed transformerless inverter is obtained, as shown in Fig. 7, with

\[
V_{CM} = \frac{V_{IN} + V_{3N}}{2} \quad (1)
\]

\[
V_{DM} = V_{IN} - V_{3N} \quad (2)
\]

A total CM voltage \(V_{tCM} \) [31] is defined as

\[
V_{tCM} = V_{CM} + V_{DM} \cdot \frac{L_{o1} - L_{o3}}{2(L_{o1} + L_{o3})}
\]

\[
= \frac{V_{IN} + V_{3N}}{2}
\]

\[
+ (V_{IN} - V_{3N}) \cdot \frac{L_{o1} - L_{o3}}{2(L_{o1} + L_{o3})} \quad (3)
\]

It is clear that if the total CM voltage \(V_{tCM} \) keeps constant, no CM current flows through the converter. For a well-designed circuit with symmetrically structured magnetic, normally \(L_{o1} \) is equal to \(L_{o3} \). During the active stage of the positive half-line cycle, \(V_{1N} \) is equal to \(V_{dc} \), while \(V_{3N} \) is equal to 0. Hence, the total CM voltage can be calculated as
During the freewheeling stage of the positive half-line cycle, under the condition that S1 and S3 share the dc-link voltage equally when they are simultaneously turned OFF, one can obtain

$$V_{IN} = V_{3N} = \frac{V_{dc}}{2}$$ \hspace{1cm} (5)

Therefore, the total CM voltage during the freewheeling stage is calculated as

$$V_{ICM} = \frac{V_{IN} + V_{3N}}{2} + (V_{IN} - V_{3N}) \cdot \frac{L_{o1} - L_{o3}}{2(L_{o1} + L_{o3})}$$

$$= \frac{V_{dc}}{2} \quad (4)$$

Equations (4) and (6) indicate that the total CM voltage keeps constant in the whole positive half-line cycle. As a result, no CM current is excited. Similarly, during the whole negative half-line cycle, the CM leakage current mode is exactly the same as he one during the positive half-line cycle; the only difference is the activation of different devices. The total CM voltage in he negative half-line cycle is also equal to $V_{dc}/2$. Therefore,

<table>
<thead>
<tr>
<th>TABLE I</th>
<th>SPECIFICATIONS AND POWER DEVICES FOR EFFICIENCY EVALUATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal input voltage</td>
<td>380V</td>
</tr>
<tr>
<td>Grid voltage</td>
<td>240 Vac</td>
</tr>
<tr>
<td>Nominal frequency</td>
<td>60 Hz</td>
</tr>
<tr>
<td>Nominal output power</td>
<td>5 kW</td>
</tr>
<tr>
<td>Nominal AC current</td>
<td>21A</td>
</tr>
<tr>
<td>Switching frequency</td>
<td>20 kHz</td>
</tr>
<tr>
<td>MOSFETs</td>
<td>IPW60R041C6</td>
</tr>
<tr>
<td>IGBTs</td>
<td>IRGB4063D</td>
</tr>
<tr>
<td>Diodes</td>
<td>APT30DQ60B</td>
</tr>
</tbody>
</table>

in the whole grid cycle the total CM voltage keeps constant, minimizing CM ground leakage current.

B. Calculation and Comparison of the Power Semiconductor Device Losses for Several Existing MOSFET Transformerless Inverters

Since the efficiency of PV transformerless inverters is normally compared by using weighted efficiency concepts, such as “CEC Efficiency” and “EU Efficiency,” it is critical to evaluate power semiconductor device losses at different load conditions rather than at nominal load condition when evaluating the efficiency of MOSFET transformerless PV inverters. The specifications and power devices for efficiency evaluation of several existing MOSFET transformerless PV inverters [11]–[13] and the proposed inverter are listed in Table I. The first-order conduction voltage drop models of semiconductor devices can be given by

$$MOSFET : v_{ds}(t) = i(t) \cdot R_{ds} \quad (7)$$

$$IGBT : v_{ce}(t) = V_t + i(t) \cdot R_{ce} \quad (8)$$
Diode: \[v_{ak}(t) = V_f + i(t)R_{ak} \] (8)

where \(v_{ds} \) is the MOSFET drain–source voltage drop, \(R_{ds} \) is the MOSFET drain–source on resistance, \(v_{ce} \) is the IGBT collector–emitter voltage drop, \(V_t \) is the IGBT equivalent voltage drop under zero current condition, \(R_{ce} \) is the IGBT on resistance, \(v_{ak} \) is the diode anode–cathode voltage drop, \(V_f \) is the diode equivalent voltage drop under zero current condition, and \(R_{ak} \) is diode on resistance; \(i(t) \) is the inverter output current and expressed as

\[i(t) = I_m \sin(\omega t) \] (10)

where \(I_m \) is the peak inverter output current and \(\omega \) is the angular frequency of the inverter output current. The duty ratios for active-stage devices and zero-stage devices of unipolar grid connected PWM inverters are expressed as (11) and (12), respectively

\[d_{active}(t) = M \sin(\omega t) \] (11)
\[d_{zero}(t) = 1 - M \sin(\omega t) \] (12)

The conduction losses for active-stage MOSFET switches, active-stage IGBT switches, zero-stage MOSFET switches, zero-stage IGBT switches, and zero-stage diodes can be calculated, respectively, from (13) to (17).

\[P_{con.active, MOSFET} = \frac{1}{2\pi} \int_0^\pi i(t) v_{ds}(t) d_{active}(t) \, dt \]
\[= I_m^2 R_{ds} \frac{2M}{3\pi} \] (13)

\[P_{con.active, IGBT} = \frac{1}{2\pi} \int_0^\pi i(t) v_{ce}(t) d_{active}(t) \, dt \]
\[= I_m V_t \frac{M}{4} \frac{I_m^2 R_{ce}}{3\pi} \] (14)

\[P_{con.zero, MOSFET} = \frac{1}{2\pi} \int_0^\pi i(t) v_{ds}(t) d_{zero}(t) \, dt \]
\[= I_m^2 R_{ds} \left(\frac{M}{4} - \frac{2M}{3\pi} \right) \] (15)

\[P_{con.zero, IGBT} = \frac{1}{2\pi} \int_0^\pi i(t) v_{IGBT}(t) d_{zero}(t) \, dt \]
\[= I_m V_t \left(\frac{1}{\pi} - \frac{M}{4} \right) \frac{I_m^2 R_{ce}}{3\pi} \]
\[- \frac{2M}{3\pi} \] (16)

\[P_{con.zero, Diode} = \frac{1}{2\pi} \int_0^\pi i(t) v_{ak}(t) (1 - M \sin(\omega t)) \, dt \]
\[= I_m V_t \left(\frac{1}{\pi} - \frac{M}{4} \right) \]
\[+ I_m^2 R_{ak} \left(\frac{1}{4} - \frac{2M}{3\pi} \right) \] (16)

For MOSFET devices, the main loss source for switching transitions is the capacitive turn-on loss resulting from the discharge of the junction capacitor \(C_{oss} \) of MOSFETs [36], which is dependent on the switched dc bus voltage and switching frequency. Normally, this capacitive turn-on energy dissipation can be obtained from the device datasheet. Hence, the switching loss of active-stage MOSFETs can be simply expressed as

\[P_{SW.active, MOSFET} = f_{SW} E_{loss}(V_{ds}) \] (18)
Another part of switching losses of active switches is induced by the diode reverse recovery of the zero-stage diodes. The switching energy induced in the main switches during diode reverse recovery period can be approximated as

\[E_{d,rr} = V_{dc}I_L \left[\left(1 + \frac{I_{rr}}{2I_L} \right) t_a + \frac{I_{rr}}{4I_L} \right] \]

\[= V_{dc}I_L t_a \]

\[+ V_{dc} \frac{I_{rr}}{4} (2t_a + t_b) \] \hspace{1cm} (19)

where \(I_L \) is the switched load current, and the definitions of \(t_a \), \(t_b \), and \(I_{rr} \) are shown in Fig. 8.

The switching loss of active-stage switches induced by the diode reverse recovery of the zero-stage devices can be obtained by the integral of (19) in the whole grid cycle

\[P_{d,rr} = \frac{1}{2\pi} \int_0^{\pi} f_{SW} \left[V_{dc}I_m \sin(\omega t) t_a \right. \]

\[+ V_{dc} \frac{I_{rr}}{4} (2t_a + t_b) \] \hspace{1cm} d\omega \]

\[= \left(\frac{I_m t_a}{\pi} \right. \]

\[+ \left. \frac{I_{rr}}{8} (2t_a + t_b) \right) V_{dc}f_{SW} \] \hspace{1cm} (20)

The third part of the switching losses is the switching loss induced in the diode during the diode reverse recovery interval, which can be approximated as

\[P_{d,SW} = f_{SW}(0.55I_{rr})(0.55V_{dc})t_b. \] \hspace{1cm} (21)

By substituting the parameters from the datasheets of IPW60R041C6 [33], IRGP4063D [34], and APT30DQ60B [35], the total losses calculated for CEC efficiency evaluation for H5 [11], H6 [12], the dual-paralleled-buck (abbreviated as DPB) [13] transformerless PV inverters and the proposed inverter are listed in Table II. It can be seen that the total power semiconductor device losses for H5 is highest due to the IGBT’s fixed voltage-drop. The power devices’ losses of DPB and the proposed inverters are minimum and the proposed inverter can achieve the same high efficiency as the MOSFET DPB inverter in [13].
Fig. 9. Power semiconductor device losses distribution comparison for H5, H6, DPB, and proposed transformerless PV inverters with 75% of the rated output power.

The power semiconductor device losses distribution for H5, H6, DPB, and proposed inverters at 75% of the rated output power condition, which is the most dominant term in CEC efficiency evaluation, is also shown in Fig. 9. It can be seen from Fig. 9 that the switching losses for these four MOSFET inverters are almost the same. The conduction losses of H5 are highest because of the IGBT’s fixed voltage drop. The conduction losses of the H6 inverter are higher than DPB and the proposed inverters because one more switch is in series in the current path during the active stages. The proposed transformerless inverter can achieve the same high efficiency as the DPB MOSFET inverter in [13]. However, the reliability of the proposed converter is greatly enhanced and the quality of output ac current is improved compared to the DPB MOSFET inverter in [13].

C. Loss Reduction With MOSFETs Replacing IGBTs as Power Switches for the Proposed Transformerless Inverter

In order to highlight the advantages of employing superjunction MOSFETs instead of IGBTs as the main switches to achieve ultra high efficiency, the loss reduction with MOSFETs replacing IGBTs as power switches for the proposed transformerless inverter is evaluated in this section. The turn-on and turn-off switching losses for active-stage IGBTs can be calculated as (22) and (23), respectively.

\[
P_{SW, on} = \frac{1}{2\sqrt{\pi}} f_{sw} \alpha_{on} f_{m} \beta_{on} k_{g, on} V_{dc} \frac{r(\beta_{on} + 1)}{\left(\frac{\beta_{on}}{2} + 1\right)}
\]

\[
P_{SW, off} = \frac{1}{2\sqrt{\pi}} f_{sw} \alpha_{off} f_{m} \beta_{off} k_{g, off} V_{dc} \frac{r(\beta_{off} + 1)}{\left(\frac{\beta_{off}}{2} + 1\right)}
\]

where \(\beta_{off} + 12/\sqrt{\pi} \beta_{on} + 1 = \sqrt{1/\pi} 0\pi \sin(\omega t) \beta_{on} \) turn-off; \(k_{g, on} \) is gate drive stiffness factor during turn-on; \(k_{g, off} \) is gate drive stiffness factor during turn-off; \(\alpha_{on} \) and \(\alpha_{off} \) are turn-on.
Fig 10 Power semiconductor device losses distribution comparison for the proposed inverter using MOSFETs and IGBTs at different output power: (a) 20 kHz switching frequency, and (b) 40 kHz switching frequency energy coefficients; a_{off} and \beta_{off} are turn-off energy coefficients; V_{dc} is the actual switched dc bus voltage; and V_{test} is test voltage for switching energy coefficients on the IGBT data sheets. A_{on},\beta_{on},a_{off} , and \beta_{off} can be obtained through MATLAB curve fitting based on the E_{on} and E_{off} of IGBT datasheet. The power semiconductor device losses distribution for the proposed inverter with MOSFETs and IGBTs at different CEC output power with operating switching frequencies of 20 and 40 kHz are comparatively illustrated in Fig. 10(a) and (b), respectively. From Fig. 10(b), when IGBTs are employed as power devices, the total power semiconductor device losses of the proposed inverter are already more than 2.4% for all tested power ranges in CEC efficiency calculation at 40 kHz switching frequency. If other losses such as output inductor loss, gate drive loss, and control board loss are included, the losses of the whole inverter system will be above 3%. As a result, the efficiency of the whole inverter system is less than 97%, which is relatively low for a transformerless grid-connected PV inverter. On the other hand, for the MOSFET inverter operating at 40 kHz switching frequency, the total power semiconductor device losses are less than 1.2% with the output power higher than 30% of the rated power and no more than 2.4% even at 10% output power. If other losses are included, the CEC and EU efficiencies of the whole inverter can still achieve an efficiency over 98%, which is higher than most of the commercially available transformerless PV inverters. Hence, a higher switching frequency operation can be adopted for the proposed inverter with superjunction MOSFETs to reduce the output current ripple and the size of passive components, while the inverter still maintains an high-level system efficiency. The experimental waveforms of the grid current i_g , the inductor currents i_{Lo1} , and i_{Lo2} under the 240 Vrms grid voltage and half-load conditions are shown in Fig. 13. This figure shows that the proposed inverter presents high-power factor and low harmonic distortion. Fig. 14 shows the leakage current test waveforms, the CM leakage current is successfully limited with the peak value 59.5 mA and rms value 10.33 mA, which are well below the limitation requirements of the German standard VDE0126-1-1 [32]. Fig. 15 shows the measured efficiencies as a function of the output power for the proposed transformerless PV inverter at switching frequencies of 20 and 40 kHz. Note that the presented efficiency diagram covers the losses of the main power stage including power semiconductor device losses and output inductor losses, but it does not include the power consumption of control circuit and the associated driver circuit. The maximum experimental efficiency of the prototype circuit is 99.3% and 99.0% with 20 and 40 kHz switching frequency operations, respectively. As shown in (24), the CEC efficiency is calculated combining different weighted factors at different output power levels.

FUZZY LOGIC CONTROLLER

In FLC, basic control action is determined by a set of linguistic rules. These rules are determined by the system. Since the numerical variables are converted into linguistic variables, mathematical modeling of the system is not required in FC. The FLC comprises of three parts:
fuzzification, interference engine and defuzzification. The FC is characterized as i. seven fuzzy sets for each input and output. ii. Triangular membership functions for simplicity. iii. Fuzzification using continuous universe of discourse. iv. Implication using Mamdani’s, ‘min’ operator. v. Defuzzification using the height method.

Fuzzification: Membership function values are assigned to the linguistic variables, using seven fuzzy subsets: NB (Negative Big), NM (Negative Medium), NS (Negative Small), ZE (Zero), PS (Positive Small), PM (Positive Medium), and PB (Positive Big). The partition of fuzzy subsets and the shape of membership $CE(k)$ $E(k)$ function adapt the shape up to appropriate system. The value of input error and change in error are normalized by an input scaling factor.

Table I Fuzzy Rules

<table>
<thead>
<tr>
<th>Change in error</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NB</td>
</tr>
<tr>
<td>NB</td>
<td>PB</td>
</tr>
<tr>
<td>NM</td>
<td>PB</td>
</tr>
<tr>
<td>NS</td>
<td>PB</td>
</tr>
<tr>
<td>Z</td>
<td>PB</td>
</tr>
<tr>
<td>PS</td>
<td>PM</td>
</tr>
<tr>
<td>PM</td>
<td>PS</td>
</tr>
</tbody>
</table>

In this system the input scaling factor has been designed such that input values are between -1 and +1. The triangular shape of the membership function of this arrangement presumes that for any particular $E(k)$ input there is only one dominant fuzzy subset.

The input error for the FLC is given as

$$E(k) = \frac{p_{ph(k)} - p_{ph(k-1)}}{V_{ph(k)} - V_{ph(k-1)}}$$

(10)

$$CE(k) = E(k) - E(k-1)$$

(11)

Inference Method: Several composition methods such as Max–Min and Max-Dot have been proposed in the literature. In this paper Min method is used. The output membership function of each rule is given by the minimum operator and maximum operator. Table 1 shows rule base of the FLC.

Defuzzification: As a plant usually requires a non-fuzzy value of control, a defuzzification stage is needed. To compute the output of the FLC, „height” method is used and the FLC output modifies the control output. Further, the output of FLC controls the switch in the inverter. In UPQC, the active power, reactive power, terminal voltage of the line and capacitor voltage are required to be maintained. In order to control these parameters, they are sensed and
compared with the reference values. To achieve this, the membership functions of FC are: error, change in error and output.

The set of FC rules are derived from

$$u = \alpha E + (1 - \alpha)C$$

Where α is self-adjustable factor which can regulate the whole operation. E is the error of the system, C is the change in error and u is the control variable. A large value of error E indicates that given system is not in the balanced state. If the system is unbalanced, the controller should enlarge its control variables to balance the system as early as possible. One the other hand, small value of the error E indicates that the system is near to balanced state. Overshoot plays an important role in the system stability. Less overshoot is required for system stability and in restraining oscillations. During the process, it is assumed that neither the UPQC absorbs active power nor it supplies active power during normal conditions. So the active power flowing through the UPQC is assumed to be constant. The set of FC rules is made using Fig.(b) is given in Table 1.

The calculated CEC efficiencies of the proposed transformer less inverter at 20 and 40 kHz switching frequencies are 99% and 98.8%, respectively. The CEC efficiency at 40 kHz switching frequency is about 0.2% lower than at 20 kHz switching frequency operation. However, 40 kHz operation can gain the benefits of reduced output current ripple and the reduced size of passive components.

![Switch gating signals](image)

Fig. 11. Switch gating signals: in (a) grid cycle and (b) PWM cycle.

![Drain–source voltage waveforms](image)

Fig. 12. Drain–source voltage waveforms of the switches $S1$, $S3$, and $S5$: in (a) grid cycle and (b) in PWM cycle.

![Experimental waveforms](image)

Fig. 13 Experimental waveforms of ground potential V_{EN}, grid current, and current of inductor L_{01}.
CONCLUSION

A high reliability and efficiency inverter for transformer less PV grid-connected power generation systems is presented in this paper. The main characteristics of the proposed transformer less inverter are summarized as follows:

1) Ultra high efficiency can be achieved over a wide output power range by reliably employing super junction MOSFETs for all switches since their body diodes are never activated

2) No shoot-through issue leads to greatly enhanced reliability

3) Low ac output current distortion is achieved because dead time is not needed at PWM switching commutation instants and grid-cycle zero-crossing instants

4) Low-ground loop CM leakage current is present as a result of two additional unidirectional-current switches decoupling the PV array from the grid during the zero stages

5) Higher switching frequency operation is allowed to reduce the output current ripple and the size of passive components while the inverter still maintains high efficiency

6) The higher operating frequencies with high efficiency enables reduced cooling requirements and results in system cost savings by shrinking passive components.

The experimental results tested on a 5 kW hardware prototype verify the effectiveness of the proposed converter and show 99.0% CEC efficiency. With the super high efficiency, low leakage ground loop CM current, high quality of output current and greatly enhanced reliability, the proposed topology is very attractive for transformer less PV inverter applications.

REFERENCES

EMAIL: tejashhekar53@gmail.com

T. SRikanth Reddy worked as Asst Professor in AUROBINDO INSTITUTE OF ENGINEERING & TECHNOLOGY, Affiliated to JNTUH, Ranga Reddy, Telangana, India.