FUZZY LOGIC CONTROLLER BASED VARIABLE SPEED WIND TURBINE FOR FLICKER MITIGATION BY INDIVIDUAL PITCH CONTROL

SUMA.G
M.Tech EPS
VIGNAN BHARATHI INSTITUTE OF TECHNOLOGY
Affiliated to JNTUH, Hyderabad, Telangana, India.

A.GOPALA KRUSHNA
Assistant Professor
VIGNAN BHARATHI INSTITUTE OF TECHNOLOGY
Affiliated to JNTUH, Hyderabad, Telangana, India.

Abstract- Due to the wind speed variation, wind shear and tower shadow effects, grid connected wind turbines are the sources of power fluctuations which can turn out flicker throughout continuous operation. This paper presents a model of associate MW-level variable speed turbine with a doubly fed induction generator to analyze the glint emission and mitigation problems. A personal pitch management (IPC) strategy is projected to cut back the glint emission at totally different wind speed conditions. The IPC theme is projected with fuzzy controller and also the individual pitch controller is meant per the generator active power and also the AZ angle of the turbine. The simulations are performed on the NREL (National Renewable Energy Laboratory) one.5-MW upwind reference turbine model. Simulation results show that damping the generator active power by IPC is a good suggests that for flicker mitigation of variable speed wind turbines throughout continuous operation.

Index Terms—Flicker, flicker mitigation, individual pitch control (IPC), variable speed wind turbine.

I. INTRODUCTION

DURING the previous few decades, with the growing issues concerning energy shortage and environmental pollution, nice efforts are taken round the world to implement renewable energy comes, particularly wind generation comes. With the rise of wind generation penetration into the grid, the facility quality becomes a vital issue. One necessary facet of power quality is flicker since it may become a limiting issue for desegregation wind turbines into weak grids, and even into comparatively sturdy grids if the wind generation penetration levels square measure high [1].

Flicker is outlined as “an impression of unsteadiness of sense experience evoked by a lightweight stimulant, whose luminosity or spectral distribution fluctuates with time” [2]. Flicker is evoked by voltage fluctuations, that square measure caused by load flow changes within the grid. Grid-connected variable speed wind turbines square measure unsteady power sources throughout continuous operation. The facility fluctuations caused by wind speed variation, wind shear, tower shadow, yaw errors, etc., because the voltage fluctuations within the network, which can turn out flicker [3]. except for the wind generation supply conditions, the facility system characteristics even have impact on flicker emission of grid-connected wind turbines, like short-circuit capability and grid electric resistance angle[4], [5]. The sparkle emission with differing kinds of wind turbines is sort of totally different.

The’ variable-speed wind turbines have higher performance with respect to the sparkle emission than fixed-speed wind turbines, with the big increase of wind generation penetration level, the sparkle study on variable speed wind turbines becomes necessary and imperative. variety of solutions are conferred to mitigate the sparkle emission of grid-connected wind turbines, like short-circuit capability and grid electric resistance angle[4], [5]. The sparkle emission with differing kinds of wind turbines is sort of totally different.

However, the sparkle mitigation technique shows its limits in some distribution networks wherever the grid electric resistance angle is low [7]. once the wind speed is high and also the grid electric resistance angle is 100, the reactive power required for flicker mitigation is three.26 per unit [8]. it’s tough for a grid-side convertor (GSC) to come up with this quantity of reactive power, particularly for
the doubly fed induction generator (DFIG) system, of
that the convertor capability is simply around zero.3
per unit.

The STATCOM that receives a lot of
attention is additionally adopted to scale back flicker
emission. However, it's unlikely to be financially
variable for distributed generation applications.
Active power management by varied the dc-link
voltage of the consecutive convertor is conferred to
attenuate the sparkle emission [8]. However, a giant
dc-link condenser is needed, and also the periods of
the condenser are going to be shortened to store of
the fluctuation power within the dc link. AN open-
loop pitch management is employed in [6] and [8] to
analyze the sparkle emission in air current speeds,
however, the pitch deed system (PAS) isn't taken into
consideration. as a result of the pitch rate and also the
time delay of the PAS build nice contributions to the
results of the sparkle emission of variable-speed wind
turbines, it's necessary to require these factors into
thought.In recent years, IPC that may be a promising
method for hundreds reduction has been projected
[9]–[11], from that it's notable that the IPC for
structural load reduction has very little impact on the
wattage. but during this paper, AN IPC theme is
projected for flicker mitigation of grid
-connected wind turbines with mathematical logic controller. the
facility oscillations square measure attenuated by
individual pitch angle adjustment per the generator
active power feedback and also the turbine AZ angle
in such some way that the voltage fluctuations square
measure ironed conspicuously, resulting in the flicker
mitigation.

II. WIND TURBINE CONFIGURATION

The overall scheme of a DFIG-based wind
turbine system is shown in Fig. 1, which consists of a
wind turbine, gearbox, DFIG, a back-to-back
converter which is composed of a rotor side convertor
(RSC) and GSC, and a dc-link capacitor as energy
storage placed between the two convertors. In this
paper, FAST is used to simulate the mechanical parts
of wind turbine and the drive train. The pitch and
converter controllers, DFIG, and power system are
modeled by Simulink blocks.

A. Fast
The open source code FAST is developed at the
National Renewable Energy Laboratory (NREL) and
accessible and free to the public. FAST can be used
to model both two and three bladed, horizontal-
axis wind turbines. It uses Blade Element Momentum
theory to calculate blade aerodynamic forces and uses
an assumed approach to formulate the motion
equations of the wind turbine. For three
bladed wind turbines, 24 degree of freedoms (DOFs) are used to
describe the turbine dynamics. Their models include
rigid parts and flexible parts. The rigid parts include
earth, base plate, nacelle, generator, and hub. The
flexible parts include blades, shaft, and tower. FAST
runs significantly fast because of the use of the modal
approach with fewer DOFs to describe the most
important parts of turbine dynamics.

B. Mechanical Drive train
In order to take into account the effects of the
generator and drive train on the wind turbine, two-
mass model shown in Fig. 2

Fig.1.Overall scheme of the DFIG-based wind
turbine system.

The influence of the flicker emission on the structural
load is additionally investigated. The quick (Fatigue,
mechanics, Structures, and Turbulence) code [12]
that is capable of simulating three-bladed wind
turbines is employed within the simulation.

Fig.2.Two-mass model of the drive train.

which is suitable for transient stability analysis is
used [13]. The drive train modeling is implemented
in FAST, and all values are referred to the wind
turbine side. The equations for modeling the drive
train are given by
\[J_w \frac{d^2 \theta_w}{dt^2} = T_w - D \left(\frac{d \theta_w}{dt} - \frac{d \theta_g}{dt} \right) - K(\theta_w - \theta_g) \] (1)

\[J_g \frac{d^2 \theta_g}{dt^2} = D \left(\frac{d \theta_w}{dt} - \frac{d \theta_g}{dt} \right) + K(\theta_w - \theta_g) - T_e \] (2)

Where \(J_w \) and \(J_g \) are the moment of inertia of wind turbine and generator, respectively, \(T_w \), \(T_e \) are the wind turbine torque and generator electromagnetic torque, respectively, \(\theta_w \), \(\theta_g \) are the mechanical angle of wind turbine and generator, \(K \) is the drivetrain torsional spring, \(D \) is the drive train torsion damper.

C. DFIG Model

The model of the DFIG is based on dq equivalent model shown in Fig. 3. All electrical variables are referred to the stator, \(uds, uqs, udr, uqr \), \(ids, iqs, idr, iqr \) and \(\psi_ds, \psi_qs, \psi_dr, \psi_qr \) are the voltages, currents, and flux linkages of the stator and rotor ind- and q-axes, \(rs \) and \(rr \) are the resistances of the stator and rotor windings, \(Ls, Lr, Lm \) are the stator, rotor, and mutual inductances, \(L1s, L1r \) are the stator and rotor leakage inductances, \(w1 \) is the speed of the reference frame.

Fig. 3. D-q equivalent circuit of DFIG at synchronously rotating reference frame.

and mutual inductances, \(L1s, L1r \) are the stator and rotor leakage inductances, \(w1 \) is the speed of the reference frame, \(ws \) is the slip angular electrical speed. The RSC of DFIG is controlled in a synchronously rotating dq-reference frame with the d-axis aligned along the stator flux position. The electrical torque \(T_e \), active power \(P_s \), and reactive power \(Q_s \) of DFIG can be expressed by [1].

\[T_e = \frac{3}{2} \frac{L_m}{L_s} \psi_s i_{qr} \] (3)

\[P_s = -\frac{3}{2} \frac{L_m}{L_s} l_{i_q r} \] (4)

Where \(p \) is the number of pole pairs, \(\psi_s \) is the stator flux, \(us \) is the magnitude of the stator phase voltage. From (4) and (5), due to the constant stator voltage, the active power and reactive power can be controlled via \(i_{qr} \) and \(i_{dr} \).

III. WIND TURBINE CONTROL AND FLICKER EMISSION ANALYSIS

For a DFIG-based variable speed wind turbine, the control objective is different according to different wind speed. In low wind speed, the control goal is to keep the tip speed ratio optimum, so that the maximum power can be captured from the wind. In high wind speed, since the available power is beyond the wind turbine capacity, which could overload the system, the control objective is to keep the extracted power constant at its rated value.

A. Control Of Back-To-Back Converter

Vector control techniques are the most commonly used methods for a back-to-back converter in a wind turbine system. Two vector control schemes are illustrated, respectively, for the RSC and GSC, as shown in Fig. 1, where \(vs \), \(is \) are the stator voltage and current, \(ir \) is the rotor current, \(vg \) is the grid voltage, \(ig \) is the GSC currents, \(wg \) is the generator speed, \(E \) is the dc-link voltage, \(Ps \), \(Qs \) ref are the reference values of the stator active and reactive power, \(Qg \) ref is the reference value of the reactive power flow between the grid and the GSC. \(E \) ref is the reference value of the dc-link voltage, \(C \) is the dc-link capacitor. The vector control objective for RSC is to implement maximum power tracking from the wind by controlling the electrical torque of DFIG. The reference value of the generator speed \(\omega \) ref is obtained via a lookup table to enable the optimal tip speed ratio. The objective of GSC is to keep the dc-link voltage constant, while keeping sinusoidal grid currents. It may also be responsible for controlling the reactive power flow between the grid and the grid-side converter by adjusting \(Qg \) ref. Usually, the

Fig. 4. Fuzzy logic controller with antiwindup
values of reactive power of RSC and GSC are set to zero to ensure unity power factor operation and reduce the current of RSC and GSC [1].

B. Pitch Control

Normally, pitch control is used to limit the aerodynamic power captured from the wind. In low wind speeds, the wind turbine should simply try to produce as much power as possible, so there is no need to pitch the blades. For wind speeds above the rated value, the pitch control scheme is responsible for limiting the output power. The fuzzy controller used for adjusting the pitch angles works well in normal operation, however, the performance of the pitch control system will degrade when a rapid change in wind speed from low to high wind speed is applied to the turbine rotor. It takes a long time for a positive power error contribution to cancel the effects of the negative pitch angle contribution that has been built up from integration of these negative power errors. The integrator antiwindup scheme is implemented as shown in Fig. 4, in which the antiwindup term with gain Kaw is fed back to the integrator only. This prevents the integrated power error from accumulating when the rotor is operating in low wind speeds. The value for Kaw may be turbine dependent. When the pitch angle is not saturated, this antiwindup feedback term is zero [14].

C. Flicker Emission In Normal Operation

As discussed in Section I, flicker emission of a grid-connected wind turbine system is induced by voltage fluctuations which are caused by load flow changes in the network, so it is necessary to analyze the electrical power to the grid. Therefore, a simulation is conducted when the mean wind speed is 13 m/s.

Fig. 5. Spectral density of the generator output power.

Fig. 6. Flicker severity P_{st} between the cases with 3p, higher harmonics and wind speed variation (square), and the case with only wind speed variation (circle).

Based on the model as shown in Fig. 1. The parameters of the wind turbine system are given in the Appendix. In this case, the turbine speed is around 0.345 Hz, which corresponds to the 3p frequency of 1.035 Hz, which is in conformation with the spectrum shown in Fig. 5. It is clearly seen that in addition to the 3p frequency, 6p, 9p, and higher frequencies are also included in the generator output power. These components will induce voltage fluctuations and flicker emission in the power grid. Further, the flicker emission of a variable-speed wind turbine with DFIG is studied. The level of flicker is quantified by the short-term flicker severity P_{st}, which is normally measured over a 10-min period. According to IEC standard IEC 61000-4-15, a flickermeter model is adopted to calculate the short-term flicker severity P_{st} [6], [15], [16]. Fig. 6 illustrates the variation of flicker severity P_{st} with different mean wind speed between the cases with 3p, higher harmonics and wind speed variation and with only wind speed variation, respectively. In the first case, in low wind speeds, with the increase of mean wind speed the P_{st} increases accordingly, because higher mean wind speed with the same turbulence intensity means larger power oscillation and larger wind shear and tower shadow effects, leading to higher flicker severity. For high wind speeds, where the wind turbine reaches rated power, the flicker level decreases due to the introduction of fuzzy blade pitch control which could reduce the power oscillation in low frequency prominently, but it cannot effectively mitigate the power oscillations with 3p, 6p, 9p, and higher frequencies. As the power oscillation is bigger for higher wind speeds when the wind speed is above the rated wind speed, the flicker level continues to rise with the increase of mean wind speed. In the case with only the wind speed variation, the P_{st} is much smaller, since the power oscillation contains little 3p and higher harmonics. From this figure, it can be concluded that the 3p and higher harmonics make a great contribution to the flicker emission of variable speed wind turbines with DFIG during continuous operation, especially in high wind speeds as shown in Fig. 6. It is recommended that the flicker contribution from the wind farm at the point of common coupling shall be limited so that a flicker emission of P_{st} below 0.35 is considered acceptable [17]. From Fig. 6, it shows the maximum P_{st} is above 0.35 in this investigation where the turbulence...
intensity is 10%. As proved in [6], Pst will increase with the increase of the turbulence intensity; therefore, it is necessary to reduce the flicker emission. For this reason, a new control scheme for flicker mitigation by individual pitch control is proposed in next section.

IV. INDIVIDUAL PITCH CONTROL FOR FLICKER MITIGATION

This section concentrates on flicker mitigation of variable speed wind turbines with DFIG during continuous operation using IPC. The flicker emission produced by grid connected wind turbines during continuous operation is mainly caused by fluctuations in the generator active power. As illustrated in Fig. 6, the flicker emission will be mitigated effectively if the 3p and higher harmonics of the generator power can be reduced. When the wind speed is above the rated wind speed, the pitch angle should be tuned by a traditional collective pitch control (CPC) to keep the output power at its rated value in order not to overload the system, and normally the 3p effect is not taken into consideration. For attenuating the generator power oscillation caused by the 3p effect, each of the three pitch angles can be added by a small pitch angle increment, which is dependent on the generator active power and wind turbine azimuth angle. When the wind speed is below the rated wind speed, usually the control objective of the wind turbine is to implement maximum power tracking by generator electrical torque control. Pitch control is not used in this area. However if the pitch angles can be adjusted around a small average value, the 3p effect can also be reduced. For this purpose, the output of the CPC should leave a small amount of residual for pitch movement. This means a small part of wind energy will be lost. Based on this concept, a novel IPC strategy is proposed. The control scheme is shown in Fig. 7. The control scheme consists of two control loops: CPC loop and IPC loop.

![Proposed individual pitch control scheme](image)

The CPC loop is responsible for limiting the output power. In this loop, Pgst is the reference generator active power, b is the collective pitch angle, of which the minimum value bmin can be obtained by simulations under different wind speed such that the mitigation of generator power fluctuation should compromise the wind power loss. In the individual pitch control loop, the band pass filter (BPF) is to let the frequency of 3p generator active power Pg3p through and block all other frequencies. Pg3p is fed to the signal processing (SP) block, since the power signal has to be transferred to the pitch signal b which subsequently is passed to the individual pitch controller to output a pitch increment for a specific blade. The three pitch angles β1, 2, 3 which are, respectively, the sum of collective pitch angles, and three pitch angle increments are sent to the PAS to adjust the three pitch angles to implement the mitigation of the generator active power oscillation.

A. Design Of BPF

The transfer function of the BPF can be expressed as follows:

\[
F(s) = \frac{Ks}{s^2 + \left(\frac{\omega_c}{Q}\right)s + \omega_c^2}
\]

Where \(\omega_c\) is the center frequency, \(K\) is the gain, and \(Q\) is the quality factor. \(\omega_c\) which corresponds to the 3p frequency can be calculated by the measurement of the generator speed \(\omega_g\). \(\omega_c = 3\omega_g/N\), where \(N\) is the gear ratio. The gain of the BPF at the center frequency is designed as 1 in order to let all the 3p frequencies pass the filter \(F(s) = K\omega_c/Q = 1\). \(Q\) which is responsible for the bandwidth of the BPF should be adjusted to let only the 3p component pass. In this case, \(Q\) is designed as \(Q = \omega_c\). Fig. 8 shows the Bode diagram of the BPF when the wind speed is above the rated value. In this case, the 3p frequency is 6.44 rad/s, and the bandwidth of the BPF which is around 0.16 Hz (1 rad/s) is shown with the dotted lines.

B. Signal Processing

The SP block has to produce a pitch signal to offset the power oscillation, in such a way that the generator power will oscillate in a much smaller range. Due to the time delay caused by the PAS and the power transfer from wind turbine rotor to the power grid, etc., the phase of the generator active power lags the phase of the pitch signal. In order to produce the correct phase angle shift of the SP block, it is very important to get the phase deviation of the component with 3p frequency offsand Pg3p. For this reason, the system is operated in high wind speed without the IPC loop. In this case, the collective pitch angle contains the component with 3p frequency. The phase angle shift can be obtained by the...
component of β with 3p frequency and P_g with 3p frequency. The SP block can be implemented with a first-order lag element, which delays the phase angle at 3p frequency. The SP block can be represented as follows:

$$F_{sp}(s) = \frac{K_{sp}}{T_{sp}S + 1} \quad (7)$$

The angular contribution of (7) is

$$\delta(\omega) = -\arctan(\omega T_{sp}) \quad (8)$$

Hence, the time constant T_{sp} can be calculated with the required angular contribution δ at ω_3p, shown as follows:

$$T_{sp} = -\frac{1}{\omega_3p} \quad (9)$$

\section*{TABLE I \ CONTROL PRINCIPLE OF INDIVIDUAL PITCH CONTROLLER}

<table>
<thead>
<tr>
<th>Azimuth angle θ</th>
<th>β_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0 < \theta < 2\pi/3$</td>
<td>β_{d2}</td>
</tr>
<tr>
<td>$4\pi/3 > \theta > 2\pi/3$</td>
<td>β_{d1}</td>
</tr>
<tr>
<td>$2\pi > \theta > 4\pi/3$</td>
<td>β_{d3}</td>
</tr>
</tbody>
</table>

Where ω_3p is the center frequency of the BPF. The gain K_{sp} can be tuned by testing, as it has no contribution to the phase shift of the SP block. Increasing K_{sp} can accelerate the flicker mitigation; however, a big value of K_{sp} might increase the flicker emission of the wind turbine.

\section*{C. Individual Pitch Controller Design}

The individual pitch controller will output the three pitch angle increments β_{d1}, β_{d2}, β_{d3} for each blade based on the pitch signal β_s and the azimuth angle θ. In this paper, the wind turbine is simulated by FAST, in which blade 3 is ahead of blade 2, which is ahead of blade 1, so that the order of blades passing through a given azimuth is 3–2–1-repeat. The individual pitch controller will output a pitch increment signal which will be added to the collective pitch angle for a specific blade, dependent on the blade azimuth angle. The principle of the individual pitch controller is described in Table I. For example, if the azimuth angle belongs to the area of $(0, 2\pi/3)$, then β_{d2} equals β_s, and both β_{d1} and β_{d3} equal 0. The three pitch increments will be, respectively, added with the collective pitch angle to give three total pitch angle demands. The three pitch angle signals will be sent to the PAS. The PAS can be represented using a first-order transfer function:

$$F(s) = \frac{1}{T_{pas}S + 1} \quad (10)$$

Where T_{pas} is a turbine dependent time constant of the PAS. In this case T_{pas}=0.1. The control scheme shown in Fig. 7 is used for mitigation of the 3p component of the generator active power, leading to the reduction of the flicker emission which is caused by the 3p effect. Similar method can also be used to reduce the 6p component of the generator active power. However, this 6p component mitigation needs a much faster pitch actuation rate, which is not taken into account in this paper.

\section*{V. FUZZY LOGIC CONTROLLER}

In FLC, basic control action is determined by a set of linguistic rules. These rules are determined by the system. Since the numerical variables are converted into linguistic variables, mathematical modeling of the system is not required in FC. The FLC comprises of three parts: fuzzification, interference engine and defuzzification. The FC is characterized as i. seven fuzzy sets for each input and output. ii. Triangular membership functions for simplicity. iii. Fuzzification using continuous universe of discourse. iv. Implication using Mamdani’s ‘min’ operator. v. Defuzzification using the height method.

\section*{Fuzzification:}

Membership function values are assigned to the linguistic variables, using seven fuzzy subsets: NB (Negative Big), NM (Negative Medium), NS (Negative Small), ZE (Zero), PS (Positive Small), PM (Positive Medium), and PB (Positive Big). The

\section*{Fig.8. Fuzzy logic controller}

Partition of fuzzy subsets and the shape of membership $CE(k)$ $E(k)$ function adapt the shape up to appropriate system. The value of input error and change in error are normalized by an input scaling factor

\section*{Table I Fuzzy Rules}

<table>
<thead>
<tr>
<th>Change</th>
<th>Error</th>
</tr>
</thead>
</table>
In this system the input scaling factor has been designed such that input values are between -1 and +1. The triangular shape of the membership function of this arrangement presumes that for any particular $E(k)$ input there is only one dominant fuzzy subset. The input error for the FLC is given as

$$E(k) = \frac{r_{ph(k)} - p_{ph(k-1)}}{v_{ph(k)} - v_{ph(k-1)}}$$

$$CE(k) = E(k) - E(k-1)$$

Inference Method: Several composition methods such as Max–Min and Max-Dot have been proposed in the literature. In this paper Min method is used. The output membership function of each rule is given by the minimum operator and maximum operator. Table 1 shows rule base of the FLC.

Defuzzification: As a plant usually requires a non-fuzzy value of control, a defuzzification stage is needed. To compute the output of the FLC, ”height” method is used and the FLC output modifies the control output. Further, the output of FLC controls the switch in the inverter. In UPQC, the active power, reactive power, terminal voltage of the line and capacitor voltage are required to be maintained. In order to control these parameters, they are sensed and compared with the reference values. To achieve this, the membership functions of FC are: error, change in error and output.

The set of FC rules are derived from

$$u = \alpha E + (1-\alpha)C$$

Where α is self-adjustable factor which can regulate the whole operation. E is the error of the system, C is the change in error and u is the control variable. A large value of error E indicates that given system is not in the balanced state. If the system is unbalanced, the controller should enlarge its control variables to balance the system as early as possible. On the other hand, small value of the error E indicates that the system is near to balanced state.

VI. SIMULATION STUDIES USING IPC

The flicker mitigation using IPC is tested in many wind speed conditions. The variable speed wind turbine with DFIG and back-to-back converter are simulated with the proposed IPC method. The parameters of NREL 1.5-MW wind turbine with DFIG are shown in the Appendix. Figs. 9 and 10 illustrate the short-term view and long-term view of the generator active power as well as the three pitch angles when the mean wind speed is above the rated wind speed. From these figures, it is shown that the generator active power to the grid is smoothed prominently. It is noted that when a power drop occurs which is caused by wind shear, tower shadow, and wind speed variation, etc., one of the blades will accordingly reduce its pitch angle, thus the generator active power will not drop so dramatically, in such a way that the power oscillation is limited in a much smaller range. Compared with the spectral density of generator active power without IPC in Fig. 5, the 3p oscillation frequency component which is significant in flicker emission of variable speed wind turbines during continuous operation is damped evidently with IPC. As a consequence, the
flicker level may be reduced by using IPC. The wind turbine system employing IPC is also carried out when the mean wind speed is below the rated wind speed, as shown in Fig. 9. As a small pitch angle movement will contribute to high power variation, in this case, the minimum pitch Angle β_{min} in the CPC loop is set to 2° (0.0349 rad), leaving a small amount of residual for IPC to mitigate the power oscillation. The performance of the generator active power in Fig. 12 demonstrates that the IPC also works well in low wind speeds at the cost of some power loss due to the pitch movement.

![Fig. 11. Long-term view of the generator active power without and with IPC, and pitch angle (low wind speed) with fuzzy logic controller.](image)

VII. CONCLUSION

This paper describes a technique of flicker mitigation by IPC of variable-speed wind turbines with MW-level DFIG. The modeling of the turbine system is disbursed mistreatment quick and Simulink. On the premise of the given model, flicker emission is analyzed and investigated in numerous mean wind speeds. To scale back the sparkle emission, a unique management theme by IPC is projected. The generator active power oscillation that ends up in flicker emission is damped conspicuously by the IPC in each high and low wind speeds. It are often terminated from the simulation results that damping the generator active power oscillation by IPC is a good suggestion that for flicker mitigation of variable speed wind turbines throughout continuous operation.

REFERENCES

SUMAG currently pursuing M.Tech in Electrical Power Systems at VIGNAN BHARATHI INSTITUTE OF TECHNOLOGY, Affiliated to JNTUH, Ghatkesar, Hyderabad, Telangana, India. Areas of interest are in Electrical Power Systems and FACTS.

E-mail id: sumagudipalli@gmail.com

A.GOPALA KRUSHNA
Completed B.Tech in Electrical & Electronics Engineering from JNTU Engineering and M.Tech in Power Electronics from BHARATH INSTITUTE Engineering & TECHNOLOGY and currently working as Assistant Professor at VIGNAN BHARATHI INSTITUTE OF TECHNOLOGY, Affiliated to JNTUH, Ghatkesar, Hyderabad, Telangana, India. He has total experience of above 8 years and he had done 3 Publications.
E-mail id: gopalkrushna@gmail.com